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Abstract 
Heart failure (HF) is a leading cause of morbidity and mortality in the United States. While medical management and 
mechanical circulatory support have undergone significant advancement in recent years, orthotopic heart 
transplantation (OHT) remains the most definitive therapy for refractory HF. OHT has seen steady improvement in 
patient survival and quality of life (QoL) since its inception, with one-year mortality now under 8%. However, a 
significant number of HF patients are unable to receive OHT due to scarcity of donor hearts. The United Network for 
Organ Sharing has recently revised its organ allocation criteria in an effort to provide more equitable access to OHT. 
Despite these changes, there are many potential donor hearts that are inevitably rejected. Arbitrary regulations from 
the centers for Medicare and Medicaid services and fear of repercussions if one-year mortality falls below established 
values has led to a current state of excessive risk aversion for which organs are accepted for OHT. Furthermore, non-
standardized utilization of extended criteria donors and donation after circulatory death, exacerbate the organ shortage. 
Data-driven systems can improve donor-recipient matching, better predict patient QoL post-OHT, and decrease needless 
organ waste through more uniform application of acceptance criteria. Thus, we propose a data-driven future for OHT 
and a move to patient-centric and holistic transplantation care processes.  
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Introduction 
Heart failure (HF) is a leading cause of morbidity and 
mortality in the United States. While medical 
management and mechanical circulatory support have 
undergone significant advancement in recent years, 
orthotopic heart transplantation (OHT) remains the 
most definitive therapy for refractory HF.  
Thus, we propose a data-driven future for OHT and a 
move to patient-centric and holistic transplantation 
care processes.  
 

Public Health Burden of Heart Failure  
Heart failure (HF) has been increasing in the United 
States over time, to an estimated prevalence of 6.2 
million, and will increase an additional 46% by 2030 (1). 
Despite marked improvement in medical therapy, the 
one-year mortality rate remains high, at 29.6%1. HF 
long-term mortality has been leveling off, with five-year 
mortality remaining constant between 2000 and 2010 
at approximately 50% (1). In 2019, 80,480 deaths were 
attributed to HF (up 42.3% from 2007), with costs 
exceeding $30 billion (1).  
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Mechanical circulatory support (MCS) is successfully 
used to treat some of these patients, with more than 
25,000 MCS device implantations for HF between 2006-
2017 (1). While great strides have been made in terms 
of optimal medical management and use of mechanical 
circulatory support, there remains a need for expansion 
of orthotopic heart transplantation (OHT) as another 
treatment modality for patients experiencing refractory 
heart failure. 
 
Transplantation is a critical solution to heart failure  
OHT remains one of the most definitive options for 
patients with end-stage HF. Since 1982, more than 
140,000 OHTs have been performed worldwide (2). 
Survival post-OHT has steadily improved over time (3). 
Median survival between 2002 and 2009 was 12.5 
years, and 14.8 years in patients who survived the first 
year (3). Currently, the greatest risk period for OHT 
patients is the first few months after surgery (3–5), with 
six-month mortality of 6.4% and one-year mortality of 
7.9%. The most significant improvements in survival 
have been noted within the first year after 
transplantation, while long-term yearly attrition rate 
remains unchanged at 3.4% per year (5). Survival to one 
year depends heavily on the primary diagnosis and 
indication for transplant, with non-ischemic and 
ischemic cardiomyopathy having the greatest one-year 
survival while retransplant has the lowest survival (3). 
Overall 60% of recipients do not require 
rehospitalization within the first year and 75% do not 
require rehospitalization between years two and five 
post-transplant (3).  
Beyond survival, multiple psychological and physical (6) 
factors contribute to Quality of Life (QoL) post-
transplant. This can include number and length of 
hospital stays, medical interventions, medications, cost 
of care, patient mobility and strength, and return to 
work (6, 7). QoL after heart transplant has improved 
over time, with 70% of patients now having few 
symptoms in daily living (8).  QoL at five years post-
transplant is associated with lower mental health 
measures than the general population, using the SF-36 
criteria at one-, three-, and five-years post-transplant 
(6). Older patients tended to have a higher QoL post-
transplant, while depressed patients had lower scores in 
all SF-36 domains6. Predictors of lower QoL score 
include pain, sexual dysfunction, gastronitestinal 
symptoms, younger age, and higher New York Heart 
Association classification (6). Despite improved 
functional capacity, only 27% and 38% of recipients 

return to work at one- and five-years post-operatively, 
respectfully (8).  
 
Inequalities in donor organ allocation restrict patient 
access to cardiac transplantation 
In October 2018, the United Network for Organ Sharing 
(UNOS) approved new criteria for OHT allocation, giving 
priority to patients who were sickest, with the aim to 
reduce waitlist mortality. Thus far, the recent changes 
have dramatically altered the use of bridging strategies 
prior to transplantation (9, 10). Patients are now less 
likely to be supported with left ventricular assist device 
(LVAD) and more likely to be temporarily supported by 
intraaortic balloon pump (IABP) (9). This has also led to 
an increase in patient`s hospital length of stay pre-
transplant, but decreased days on the waitlist overall 
(9). Post transplantation outcomes appear to be similar 
prior to implementation of new allocation strategies 
(10). Additionally, patients who are stable on LVADs as 
bridge-to-transplant therapy, are increasingly unlikely 
to receive OHT (9). Finally, UNOS policy allows a 30-day 
window for patients with a durable LVAD to be elevated 
to Status 3, with the potential to strategically use a 
patients 30-day window to increase their chances of 
receiving an OHT (11). 
 
Relative shortage of donor organs limit heart failure 
potential 
The single greatest issue facing OHT is that more than 
50% of offered donor hearts are not accepted for 
transplantation, usually being rejected due to strict 
donor selection criteria (10, 12–14). Of the 12,588 
hearts offered for transplantation during 2020, only 
3,658 transplants were performed (15). Frequently, 
these reasons result from clinicians’ interpretation of 
organ suitability and hesitancy to accept a perceived 
higher risk organ for fear of regulatory consequences if 
a negative outcome occurs (12). Donor heart 
acceptance criteria lack standardization and are often 
determined using small sample size studies (14). In fact, 
current data suggest that recipient factors more 
accurately predict survival post-transplant than donor 
factors (16). 
Recent increases in utilization of extended criteria 
donor (ECD) hearts may alleviate the shortage of 
transplantable organs. Criteria for defining the new ECD 
organs include age >40, LVEF <60%, >500-mile distance 
away, >50 previous center refusals, and positive HIV, 
HCV, or HBV (10).  
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The only criteria significantly associated with a negative 
survival outcome at high-volume centers is donor age 
>40 (10).  
Current donor-recipient matching includes size, weight, 
blood group, HLA antibodies, and variable center-
specific criteria. Donor demographics, including size, 
sex, and age, as well as comorbidities such as 
hypertension, diabetes mellitus, and smoking all are 
associated with an increase in post transplantation 
mortality (17, 18). Size matching is a useful adjunct to 
blood group and HLA antibodies, as significant under-
sizing of greater than 30% increases the risk of all cause 
one-year mortality by approximately 30%, while 
conversely, insignificant risk was seen with over-sizing 
(19). 
The majority of OHTs are performed using organs 
procured from donation after brain death (DBD) donors 
(20). While there exists potential to improve utilization 
of DBD hearts, further exploration of alternative 
donation sources is required to fully alleviate the donor 
organ shortage. Donation after circulatory death (DCD) 
is one avenue in which the pool can be significantly 
increased. Early transplantations utilized DCD organs, 
but the practice fell out of favor following the 
acceptance of brain-death criteria (20). DCD remains a 
complex issue, requiring advancements in ex vivo 
preservation and testing, as well as widespread 
adoption to emerge as a viable option for increasing 
organ pool. Some countries have adopted a more liberal 
use of DCD organs in select transplantation patients, 
reporting short-term survival similar to DBD organs (21). 
Data currently suggests that potential number of organs 
from DCD donors is rising faster than those available 
from DBD donors, although a proportion of DCD organs 
will be nonviable for OHT (21). The potential increase in 
viable OHTs by fully implementing DCD organ utilization 
is approximately 30% (21). Therefore, there is room for 
optimization of donor-recipient matching, which can 
significantly decrease the number of discarded donor 
hearts.  
Expansion of ECD, DCD, and improved donor-recipient 
matching can increase the pool of donor hearts 
available for OHT. However, widespread 
implementation remains a challenge. For the transplant 
director, integrating not only the typical characteristics, 
but also adding ECD, DCD, and additional matching 
criteria poses a unique challenge. Artificial intelligence 
can serve to assist with some of these challenges by 
predicting patient outcomes given various donor-

recipient characteristics and can easily integrate the 
added complexity of additional risk criteria.  
 
Metrics for comparing transplantation center 
outcomes require modification 
Centers for Medicare and Medicaid services (CMS) have 
established short-term minimum outcomes required for 
center certification and funding, which influence 
clinicians' decision as to whether accept a heart for 
transplantation (22). Significant risk aversion arises over 
potential regulatory intervention for centers with lower 
90-day and one-year survival rate. However, the 
practice of OHT and organ allocation involves more 
nuance than a strict donor guideline can provide. 
OHT centers have significant differences in short-term 
outcomes (3, 23). Low-volume centers have lower one-
year patient and graft survival across all donor-recipient 
pair risk stratification (3). All centers performing more 
than 40 transplants per year have a 30-day mortality of 
less than 5% (7). Substantial intercenter variance 
appears to be reduced once a volume of 20 transplants 
per year is achieved (23). Centers with higher volume 
also have a greater utilization of ECD organs, and have 
shown one- and five-year survival to be equivalent to 
non-ECD hearts (10). Thus, high volume centers can 
continue to undertake increased transplantation using 
ECD hearts, and further expansion of ECD criteria could 
aid in supplementing the suitable donor organ supply. 
Centers with low volumes often have worse outcomes 
for patients on the waiting list (23). The CMS 
requirement for accreditation is 10 transplants per year, 
however 65% of centers failed to achieve this value 
(24). Low-volume centers performing less than 10 
transplants per year have up to a 100% increased risk in 
30-day mortality, and centers performing fewer than 
two per year have a 115% increased 30-day mortality 
(23). Additionally, a single poor outcome has a greater 
effect on a low-volume center’s short-term survival, 
further disincentivizing the use of potentially marginal 
organs. Due to regulatory oversight and requirements 
to maintain specific, albeit arbitrary, survival rates, low-
volume centers may be encouraged to practice an 
excessively conservative acceptance criteria for donor 
organs (12, 22).  
In summary of the current state of OHT, many potential 
hearts are needlessly discarded which would have 
provided improved patient quality of life and extend 
survival.  
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There is variation in outcomes between high- and low-volume centers, and organs procured via ECD as well as DCD. 
These organs have the potential to alleviate some of the imbalance between supply and demand but are inherently 
higher risk and should thus be undertaken at centers familiar with these procedures. 
 Additionally, transplant directors may be reluctant to undertake significant ECD and DCD transplantations given the 
perceived risk. These challenges can be addressed by the development of an artificial intelligence (AI) application which 
aids in the decision-making process, ideally, leading to the utilization of more high-risk organs to better address the 
donor organ shortage.  
  
Overview of artificial intelligence for improving outcomes in OHT 
Artificial Intelligence (AI) is the extension of machine learning (ML) that seeks to mimic and enhance the decision-making 
process of humans by leveraging big data and computational efficiencies. While these terms are often used 
interchangeably, they do have key differences. Understanding these differences and subsequent application to medicine 
is important for further implementation. 
AI refers to a broad overview of all systems or technology which can perform various human-like tasks (25, 26). ML 
refers to a specific category within AI that utilizes large data sets to learn from, improve task-efficiency, and develop 
educated predictions (26). Deep learning (DL) algorithms are emerging and have potential to revolutionize medical 
decision making, but few physicians have experience with them. DL is more complex and attempts to develop an 
artificial neural network (26), though the specific algorithms are beyond the scope of this review. In general, all three 
require the utilization of significant computing power and specific training to integrate vast amounts of data in a more 
efficient manner than humans can perform (25, 27).  
Within the medical field, AI is already being utilized, with applications ranging from disease diagnostics to drug dosage 
algorithms (28). The advantages of implementing AI include medical efficiency, precision, economic, and decreased 
physician workload. With respect to medical accuracy, AI has been on par or outperformed humans in making accurate 
medical decisions (28–33). In a study from Stanford University, deep neural networks were able to achieve equitable 
performance as 21 board-certified dermatologists on biopsy proven clinical images (29). The Society of Thoracic 
Surgeons has developed an online adult cardiac surgery risk model, with remarkable success in prediction of 
performance metrics (30, 31). Known incidence of acute kidney injury after cardiac surgery has led to the development 
of a ML program to predict its post-operative incidence (28). The use of AI within OHT has been used to predict survival 
at various time-points both pre- and post-OHT (34-40), identify variables that predict waitlist mortality (41) and predict 
graft rejection using histopathology (42) (Table 1). However, the use is not widespread, and most studies have evaluated 
retrospective data with no reported use in prospective selection of donor-recipient pairs that we could find. A recent 
systematic review by Naruka et al. identified three primary roles of ML in OHT: 1) Predictive modeling of OHT outcomes, 
2) ML in graft failure outcomes, and 3) ML to aid imaging in OHT (43).  Their results also suggest that ML is not limited to 
morbidity and mortality prediction, but could assist with identifying graft failure, medication adherence, and lifestyle 
changes in OHT patients (43).  The continued application of AI within the realm of OHT has the potential to decrease 
inherent biases present when evaluating potential donor-recipient pairs, while using statistics and modeling to 
accurately match donor-recipient pairs to optimize short- and long-term recipient outcomes in addition to patient-
centric QoL. 
 
Implementation of ML to drive precision heart transplantation 
The implementation of ML in OHT remains in its infancy, with no direct applications to the field (27). Limiting factors to 
full application of AI have been discussed by Goswami and include four critical components which are necessary for 
optimal integration: 1) data scientists with expertise and experienced in AI, 2) quality and volume of available data, 3) 
experience of clinical faculty in transplantation, and 4) assessment of biases (27).  
ML has the potential to improve the process by which organs are accepted for OHT, as it can integrate large data sets, 
such as those from: UNOS, Organ Procurement and Transplantation Network, Scientific Registry of Transplant 
Recipients, and genetic registries to predict short- and long-term outcomes given an algorithmic matching program. 
Utilizing statistical and neural network modeling, ML has been able to better predict long-term outcomes in liver and 
kidney transplantation than current practice standards (32, 33) Retrospective survival predictions for OHT patients have 
also been successfully demonstrated with high accuracy, though not universally implemented (44).  
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Table 1: Review and comparison of select studies using various techniques of artificial intelligence in cardiac surgery 
Author Population Design Follow-

Up 
Results Outcomes 

Medved 
et al34 

27,860 adult heart 
transplantations  

Derivation cohort (pre-
2009) and test cohort 
(post-2009) to 
compare neural 
network IHTSA vs 
traditional risk model 
IMPACT  

One-year 
mortality 

Flexible nonlinear artificial 
neural network (IHTSA) 
predicts one-year mortality 
with better accuracy than 
traditional risk scoring (IPACT) 

Public web-based batch 
calculator available for virtual 
recipient-donor matching pool  

Yoon et 
al35 

UNOS database of 
59,820 patients who 
received heart 
transplant and 35,455 
patients on the weight 
list who did not 
receive heart 
transplant 

Development of novel 
risk prediction 
algorithm using ToPs 

Three-year 
mortality  

ToPs improve survival 
prediction in both pre- and 
post-cardiac transplantation 

ToPs predict survival with 
more accuracy and more 
personalization which 
benefits patients, clinicians, 
and policymakers for clinical 
policy and decision making 

Miller et 
al36 

UNOS database of 
3,502 pediatric 
patients undergoing 
heart transplant  

Evaluation of three 
machine learning 
algorithms 
(classification and 
regression trees, RFs, 
and ANN) 

One-, 
three-, and 
five-year 
mortality  

RF achieved the best fit to 
training data, and performed 
best in testing data; however, 
sensitivity was poor across all 
models 

ML demonstrates fair 
predictive utility with poor 
sensitivity, potentially 
fundamentally limited by 
determinants of long-term 
survival missing from registry 
data sets  

Zhou et 
al37 

381 patients 
undergoing heart 
transplant at a single 
institution in China  

Development of risk-
reduction model using 
least absolute 
shrinkage and selection 
operator 

One-year 
mortality 

Albumin, recipient age, and 
left atrial diameter three 
most important factors in 
one-year mortality prediction. 
RF models achieved best 
sensitivity in predicting 
survival 

Prediction model for 
postoperative prognosis that 
could help to recognize high-
risk recipients, personalize 
therapy, and reduce organ 
waste  

Allyn et 
al38 

6,520 patients 
undergoing elective 
cardiac surgery with 
cardiopulmonary 
bypass 

Retrospective 
comparison of machine 
learning vs EuroSCORE 
II  

Prediction 
of in-
hospital 
mortality 

Machine learning is superior 
to EuroSCORE II in predicting 
mortality after non-urgent 
cardiac surgery  

Machine learning can be 
beneficial in the field of 
medical prediction. 

Agasthi et 
al39 

ISHLT registry of 
15,236 patients 
undergoing heart 
transplantation 

Included 87 variables in 
GBM model 

Five-year 
survival 
and graft 
failure 

Variables with highest 
predictive value included 
length of stay, recipient and 
donor age, recipient and 
donor BMI, and total ischemic 
time 

GBM can provide good 
accuracy in predicting both 
five-year mortality and graft 
failure after heart transplant, 
and may aid in selecting 
matches for transplant with 
high likelihood of success  

Ayers et 
al40 

UNOS registry of 
33,657 patients 
undergoing heart 
transplant 

Retrospective, 
randomized controlled 
trial combining 
multiple machine 
learning algorithms 
into one ensemble 
model 

One-year 
survival  

Ensemble model 
demonstrated superior 
predictive performance  

Machine learning can improve 
risk prediction, which may 
assist with patient selection, 
evaluation of transplant 
centers, organ allocation, and 
preoperative counseling and 
prognostication 

Artificial Neural Networks (ANN); Gradient boosted Machine (GBM);International Heart Transplantation Survival Algorithm (IHTSA); Index for 
Mortality Prediction After Cardiac Transplantation (IMPACT); International Society of Heart and Lung Transplant (ISHLT); Trees of Predictors 
(ToPs); Random Forests (RFs); United Network for organ Sharing (UNOS) 
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While survival prediction alone is useful, it is insufficient 
without improved donor-recipient matching and a focus 
on patient-centric outcomes. Better donor-recipient 
matching will provide guidance to the physician as to 
whether donor organ is appropriate risk for a specific 
recipient, and likely to improve that patient’s QoL.  
ML can integrate patient centric QoL data into models 
that optimize patient outcomes, in addition to 
compatibility algorithmic matching. Using ML, 
algorithms can be trained to predict if a given patient 
will survive to 90 days, one-year, or to whether survival 
will be meaningful and worth the risk of OHT. 
Additionally, in the era of implantable and wearable 
medical technology, ML offers the promise of near real-
time monitoring of continuously monitored patient data 
that is not classically considered in medical care. One 
can imagine a world in which post-transplantation 
patients have a medical device constantly monitoring 
their cardiac function. An alert could then be sent to 
patients and/or their clinicians when abnormalities 
occur. Ideally, this would decrease the cost associated 
with excess hospitalizations post-transplant, as 
complications could be detected and addressed early, 
before requiring hospitalization. Further, when 
intervention is warranted, decreased time from event 
to care will lead to greater recovery. The nature of 
computational systems lends to improvement over 
time. Thus, we believe the future is bright for AI to 
improve outcomes in OHT. 
 
Conclusion 
In summary, OHT is a lifesaving and life-changing 
procedure, but the field is focused on short-term 
procedural outcomes rather than a holistic QoL. Patient-
centric approaches will enhance long-term outcomes 
and organ utilization. The combination of algorithmic 
matching between donor and recipient via ML may 
serve to maximize long-term patient and graft survival. 
ML may encourage physicians to accept more marginal 
donor organs if presented with concrete and justifiable 
data suggesting that the organ is of appropriate survival 
risk for that recipient. This can further expand the pool 
of donor organs and decrease the number of discarded 
organs, thereby decreasing waitlist morbidity and 
mortality. Additionally, integrating donor-recipient 
matching with patient-centric outcomes using ML may 
help predict post-OHT QoL in metrics meaningful to 
patients. Development of an integrated model of the 
recipient for estimating short- and long-term risk, as 
well as QoL using a data-driven advance towards 

precision OHT will deliver greater value to more 
patients, while decreasing needless waste and excess 
risk aversion. 
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